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Name, Last Name: ŞEREF KUTAY YAKUT

Signature :

v



vi



ABSTRACT

ESTIMATION OF A STOCHASTIC VOLATILITY AND JUMPS MODEL USING
GENERALIZED METHOD OF MOMENTS WITH ORDINARY MOMENT

CONDITIONS

Yakut, Şeref Kutay

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Ali Devin Sezer

April 2024, 34 pages

One of the first works estimating jump risk premium in financial markets is the semi-
nal work of Jun Pan published in 2002. In this work Pan uses the generalized method
of moments (GMM) to estimate the parameters of a stochastic volatility price model
with jumps from index and option price data. In the implementation of GMM, Pan
uses a set of optimal moment conditions. In this thesis, we simulate the stochastic
model used in Pan’s work and apply the GMM estimation algorithm using ordinary
moment conditions on simulated data. The estimation results suggest that the ordi-
nary moment conditions are not very sensitive to model parameters and as a result
the estimation algorithm quickly converges to a point around the initial parameter es-
timate. We applied the same algorithm to a stock price and a call option quoted on
Borsa İstanbul and observed a similar performance.

Keywords: Jump-risk premium, option prices, stochastic differential equations, Borsa
Istanbul
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ÖZ

SIÇRAMALI VE STOKASTİK VOLATİLİTELİ BİR MODELİN SADE
MOMENT KOŞULLU GENELLEŞTİRİLMİŞ MOMENTLER YÖNTEMİ İLE

TAHMİNİ

Yakut, Şeref Kutay

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ali Devin Sezer

Nisan 2024, 34 sayfa

Finansal marketlerde sıçrama riski priminin hesaplanmasıyla ilgili ilk çalışmalardan
biri Jun Pan’in 2002 yılında yayınladığı yazısıdır. Pan bu çalışmasında sıçramaya
izin veren bir stokastik volatilite modelindeki stokastik diferansiyel denklemin para-
metrelerini genelleştirilmiş momentler yöntemiyle (generalized method of moments,
GMM) endeks ve opsiyon fiyat verisi kullanarak tahmin etmiştir. GMM uygulama-
sında Pan optimize edilmiş moment koşulları kullanmıştır. Bu çalışmamızın amacı,
Pan’in makalesinde kullandığı modeli simüle etmek ve simüle edilen veri üzerinde
tahmin çalışmasını sade moment koşulları kullanarak uygulamaktır. Tahmin algo-
ritması simüle edilmiş verilere uygulandığında, sade moment koşullarının modelin
parametrelerine çok duyarlı olmadığı ve bu sebeple algoritmanın sonucunun önemli
ölçüde algoritmaya verilen başlangıç parametreleri tarafından belirlendiği gözlem-
lenmiştir. Aynı algoritma Borsa İstanbul’da işlem gören bir hisse senedine ve bu hisse
senedi üzerine yazılı bir alım opsiyonuna da uygulanmıştır ve benzer sonuçlar elde
edilmiştir.

Anahtar Kelimeler: Sıçrama Riski Primi,Opsiyon Fiyatlandrması, Stokastik Diferan-
siyel Denklemler, Borsa İstanbul
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CHAPTER 1

INTRODUCTION

Stochastic differential equations (SDE) are generalizations of ordinary differential

equations (ODE) where the right side of the equation is allowed to have stochastic

integral terms driven by stochastic processes such as the Brownian motion or more

generally Levy processes. Starting with the seminal work [6] of Black and Scholes

(BS) the SDE based models gained a central role in option pricing. The initial BS

model assumes that stock prices are driven by a standard Brownian motion with con-

stant volatility, i.e., the asset price is assumed to satisfy an SDE of the form

dSt = µStdt+ σStdWt

where σ > 0 is a constant and W is a standard Brownian motion. A variety of works

presented to develop the Black Scholes [6] formula with implementing jump and

volatility processes such as Bakshi [3] and Chernov [8]. An important work concern-

ing jump processes is [5] by Bates. He presented evidence that the distribution of S&P

500’s option prices can be modeled accurately using stochastic volatility process with

jumps for small volatility shocks. Various treatments applied to Bates model such as a

fast numerical solution using a Bermudian approximation by Ballestra [4] and a linear

complementarity problem formulation by Toivanen [21]. Duffie, Pan and Singleton

[10] presented an analytical framework for option pricing for generalized affine jump

diffusions using characteristic functions and Fourier transforms. A similar character-

istic function treatment done by Deng [9] for a two-factor stochastic volatility model.

In addition to being the main tools in option pricing, these models can be used to

understand the structure of financial markets. A natural question in this regard is the

following: assuming that prices in a given market exhibits random jumps, how is this
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jump-risk priced in the market? To the best of our knowledge, the first work that asks

and systematically treats this question is the seminal work [16] by Jun Pan. In [16],

Pan fits an SDE model that allows stochastic volatility and jumps to the S&P 500 data

to compute a risk-premium for jump risk. The goal of this thesis is to simulate the

model in this paper and try to fit it to Borsa Istanbul data using a simplified version

of the estimation procedure in [16].

The specific SDE model that [16] uses for the stock price and volatility processes is

given in Chapter 2. In this introduction we will give a summary of Pan’s [16] approach

in estimating jump risk premium and explain the content of our thesis work. Pan’s

uses a model for (S, V ) that is similar to the Bates model with denoting S as the price

process and V as the stochastic volatility process. In addition to (S, V ), he assumes

that the dividend process q and the interest rate processes r to be stochastic which

are to be estimated using market data. As in the classical Black Scholes model, risk

premiums, including the jump-risk premium, are encoded in the difference between

the drifts of the price process S under the actual probability measure governing (S, V )

and the pricing risk neutral measure. For S, Pan [16] uses the S&P 500 index itself;

however for stochastic volatility V , he uses the implied volatility which is obtained

from C, the price of a call option, since volatility itself can not directly observed in

the market. For C Pan uses a call option on S with strike K that is closest to S and

a maturity that is as near as possible to today’s date in the market. Note that to get V

from C one needs the model parameters, which are unknown. So in each iteration of

the estimation process [16] uses the parameter values in the current estimation step;

we comment on this further below.

As in the Bates model in [5], the model assumptions allow a direct calculation of

the characteristic function of (S, V ). This is the main computational tool both in the

computation of option prices and model estimation. The characterstic functions used

in [16] are derived in [10]. In Section 2.4 we rederive the characteristic function of

(S, V ) assuming q and r to be constant.

For estimating the parameters of the stochastic volatility model, there can be found a

variety of different methods in the literature. Friedman and Harris [12] presented a

likely-hood estimation approach using recursive numerical integration and Sandmann
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[19] showed Monte Carlo likely-hood method of estimating models with comparing

Monte Carlo Markov Chain approach. Multiple adaptations for method of moments

method is also presented, such as Duffie [11] and Bolko [7]. Andersen and Sorensen

[2] introduced generalized method of moments to stochastic models by further of-

fering how to select moments and the weighting matrix to get desirable results in

small samples. As the estimation procedure Pan uses GMM. The GMM is applicable

because the availability of the characteristic function of (S, V ) enables an explicit

calculation of the joint moments. However, there is an issue that needs to be handled

before GMM estimation: V itself is not directly observable. To overcome this prob-

lem, Pan uses the following approach: let ϑn be the sequence of parameter estimates

generated by the estimation process, let V ϑn
t be the volatility implied by (St, Vt) as-

suming that the actual model parameters equal ϑn; then in the (n + 1)st iteration of

GMM (S, V ϑn) is used as the underlying data; Pan calls this procedure Implied State

GMM (IS-GMM) in [16]. We will give further comment about IS-GMM in Chapter

3.

Our thesis work consists of the following: in Section 2.4 we give a detailed derivation

of the characteristic function of (S, V ) assuming r and q to be constant. In Chapter

4 we simulate (S, V ) and the compute C for the simulated data. We then apply the

IS-GMM algorithm of Pan to the simulated data. In our implementation of the GMM

we directly use the ordinary moment conditions rather than the optimal moment con-

ditions used in [16]. We then present a first attempt at applying this approach to

computing jump risk premium to Borsa Istanbul data. BIST30 Index consists of 30

of the major stocks traded on Borsa Istanbul. We use as S one of the components

of the BIST30 index: TUPRS, Turkiye Petrol Rafinerileri AS. As of January 2024,

TUPRS constitutes around 7% of the market capitalization of BIST30. In order to

ease our calculations, we also assumed that the interest rate r to be the Central Bank

of Turkey’s one-week repo auction rate (r = 0.45) as in February 2024. For our anal-

ysis, we chose a call option with the underlying TUPRS between dates of February

1 and March 15 of 2024. We comment on the results of the application of IS-GMM

to simulated data and to TUPRS in Chapter 4. Conclusion (Chapter 5) comments on

possible future work.
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CHAPTER 2

MODEL

2.1 Data Generating Process

Throughout this work, the random variables are defined on the probability space

(Ω,F ,P) with the filtration {Ft}, which satisfies the usual conditions (see, [17,

Chapter 1]). In this section, we follow the adaptation of the Bates [5] model, made

by Pan [16]. Heston’s model contains three elements of uncertainty to the underlying

price dynamic: a diffusive return shock, volatility shock and jump risk. Before stating

the data generating process, we introduce the jump dynamics in the model.

2.1.1 Jump Dynamics

In the model, the price process follows a pure jump process. A pure jump process

is a purely discontinuous stochastic process such as a Poisson Process. Jumps occur

with a Poisson Counter Nt with a state-dependent stochastic intensity process {λVt :
t > 0} with λ > 0. If a jump occurs at time t = τ , the stock price jumps with from

S(τ−) to S(τ−)exp(U s
τ ) where U s

i is normally distributed with U s
i ∼ N(µj, σj). This

specification creates a jump size of (exp(U s
τ ) − 1). Pan defines the jump dynamics

as a Compound Poisson process with the help of a definition in [20, Section 11.3] as

follows:

Zt =
Nt∑
i=1

exp(U s
i )− 1 (2.1)
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where Nt is independent of (exp(U s
i ) − 1) with µ = E[exp(U s) − 1] = exp(µj +

σ2
j/2)−1 as mean relative jump size. Using µ, one can define compensated compound

process as follows:

Theorem 2.1.1. Let Zt be a compound Poisson process defined as in (2.1). Then the

compensated Poisson process

Zt − λVtµt

is a martingale.

Proof. See [20, Theorem 11.3.1].

2.1.2 Data Generation

The data generating process introduced by Pan [16] is as follows:

dSt = [rt − qt + ηsVt + λVt(µ− µ∗)]Stdt+
√
VtStdW

(1)
t + dZt − µStλVtdt

dVt = κv[v̄ − Vt]dt+ σv
√
Vt

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
(2.2)

where W = [W (1),W (2)]T is a standard Brownian motion, Zt is a compound Poisson

process, independent of W , as described in Section 2.1.1 with both being adopted to

the filtration {Ft}.

Focusing on the equity risk premia (or drift) of the price process, stock pays out

dividend yield qt, appreciates rt as constant interest rate and two risk-premium com-

ponents; ηsVt and λVt(µ − µ∗). Risk-premium for Brownian return risks are treated

similarly to the risk-return trade-off of the Capital Asset Pricing Model (CAPM). It

is parameterized by ηsVt where ηs is a constant. Risk-premium for volatility risks are

not as clear as return risks, since volatility itself is not an asset to be traded. However,

Pan parameterized it with parameter ηvVt by mentioning volatility of volatility may

reflect an additional premium in options. This additional parameter will be introduced

to model in (2.6).

Jump risks are priced on the market by allowing µ∗, the risk-neutral jump size, to

be different from the data-generating counterpart µ. The jump-timing risk can be

6



measured similarly by allowing risk-neutral jump time parameter λ∗ to be different

from the data-generating counterpart λ. In his work, Pan focuses on the jump size

risk premium implicit in options; therefore we will ignore jump timing risk premium

by assuming λ∗ = λ. While calculating risk-neutral measure, this specification con-

tributes to the pure-jump process Zt to be a martingale under risk-neutral measure

Q.

The volatility process defined as an one-factor square root process, where κv is mean

reversion rate, v̄ is constant long-run mean and σv is the volatility coefficient of

volatility. Volatility and price processes are correlated by ρ as introduced in [15].

2.2 Risk-Neutral Measure

In contrast of Black Scholes setting, the model contains additional parameters of

uncertainty such as jump-risks which makes the market incomplete. In order to

eliminate arbitrage opportunities, we follow a change of measure technique given

by Shreve as in [20, Section 11.6.3].

Proposition 2.2.1. Let us define a Brownian motion Wt and compound Poisson pro-

cess Zt as in Section 2.1.1 with density f(y) on a filtered probability space (Ω,F ,P).

Let λ∗ be a positive number, let f̃(y) be another density function with property f̃(y) =

0 whenever f(y) = 0 and ζt be an adapted process. Define πt as follows:

π1
t = exp

(
−
∫ t

0

ζudWu −
1

2

∫ t

0

ζ2udu

)
(2.3)

π2
t = e(λ−λ∗)t

N(t)∏
i=1

λ∗f̃(Yi)

λf(Yi)
(2.4)

πt = π1
t π

2
t (2.5)

The process πt is a martingale.

Proof. See [20, Lemma 11.6.8].
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The model contains two independent Brownian Motions. To price the additional risk

factors, we need to specify the adopted ζt for each Brownian Motion. In [16, Ap-

pendix A], Pan defines ζt as follows:

ζ
(1)
t = ηs

√
Vt ζ

(2)
t = − 1√

1− ρ2

(
ρηs +

ηv

σv

)√
Vt (2.6)

where ζ(1)t and ζ(2)t are adopted processes for W (1)
t and W (2)

t , respectively. If we plug

(2.6) into (2.3), we will obtain the following expressions:

π1
t (1) = exp

(
−
∫ t

0

ηs
√
VudW

(1)
u − 1

2

∫ t

0

(ηs)2Vudu

)
(2.7)

π1
t (2) = exp

(
−
∫ t

0

−1√
1− ρ2

(
ρηs +

ηv

σv

)√
VudW

(2)
u

− 1

2

∫ t

0

1

1− ρ2

(
ρηs +

ηv

σv

)2

Vudu

)
(2.8)

where π1
t (1) and π1

t (2) are for W (1)
t and W (2)

t , respectively.

Pan assumes the following approach for jump process: First, he assumes λ∗ = λ to

keep jump-time intensity same as data generating process. Next, he assumes jump-

sizes are distributed log-normally with Q-mean µ∗
j and Q-variance σ2

j . Deploying our

setting in (2.4) gives us the following:

π2
t =

N(t)∏
i=1

f̃(Yi)

f(Yi)

=

N(t)∏
i=1

1
yiσj

√
2π

exp
(
− (lnyi−µ∗

j )
2

2σ2
j

)
1

yiσj

√
2π

exp
(
− (lnyi−µj)2

2σ2
j

)
=

N(t)∏
i=1

exp
(
(µ∗

j − µj)(2lnyi − µj − µ∗
j)

2σ2
j

)
(2.9)

Under risk neutral measure Q, the jump size risk premium in (2.2) creates a compen-

sating effect for the compound Poisson process.

Now, define πt = [πt(1), πt(2)]
⊤ where πt(i) = π1

t (i) ∗ π2
t with i = 1, 2 as in (2.7)

and (2.8), respectively. To find a equivalent martingale measure Q, fix a maturity date

8



T and define Q =
∫
A πtdP for all A ∈ F . Now, we give a theorem which connects

data-generating measure P to risk-neutral measure Q.

Theorem 2.2.1. Under probability measure Q, the process

W̃t = Wt +

∫ t

0

ζsds (2.10)

is Brownian Motion, Zt is compound Poisson process with jump time intensity λ∗ and

independent, identically jump distributed jump sizes having density f̃(Yi), and the

processes W̃t and Zt are independent.

Proof. See, [20, Theorem 11.6.9].

Using Theorem 2.2.1, one can find the Brownian Motion W̃t under Q measure as

follows:

dW̃
(1)
t = dW

(1)
t + ηs

√
Vtdt

dW̃
(2)
t = dW

(2)
t − 1√

1− ρ2

(
ρηs +

ηv

σv

)√
Vtdt

(2.11)

The risk-neutral price and volatility processes can be found by plugging (2.11) into

(2.2).

dSt = [rt − qt]Stdt+
√
VtStdW̃

(1)
t + dZ̃t − µ∗StλVtdt

dVt = [κv(v̄ − Vt) + ηvVt]dt+ σv
√
Vt

(
ρdW̃

(1)
t +

√
1− ρ2dW̃

(2)
t

) (2.12)

where W̃t = [W̃
(1)
t , W̃

(2)
t ]⊤ is standard Brownian Motion, Z̃t is a pure jump process

with jump arrival intensity {λVt : t ≥ 0}. The jump-amplitudes U s
i are normally

distributed with mean µ∗
j and variance σ2

j . The mean relative jump size is µ∗ =

EQ[exp(U s) − 1] = exp(µ∗
j + σ2

j ) − 1. As in the data generating measure, the last

term µ∗StλVtdt is a compensator for jump process Z̃t. The volatility process under

Q follows the same specification as in (2.2) except that the parameter ηvVt which

captures volatility risk premium.

2.3 Option Pricing

The most influential work on option pricing done by Heston in [15]. In his work, he

showed that risk-neutral probabilities in the option pricing formulas can be calculated
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by using Fourier inversion of a explicitly known conditional characteristic function

of a stochastic volatility model. In this section, we will share an analytically tractable

method for valuing a plain vanilla call option under St as in [10]. We denote the

model parameters in (2.12) as:

ϑ = (κv, v̄, σv, ρ, λ, µ, σj, η
s, ηv, µ∗) (2.13)

2.3.1 Linking Characteristic Function to Option Prices

The price of a call option at time-t can be denoted as Ct. Let us consider a future time

T where CT has a payoff max(0, ec.lnST −K) where ST is a jump-diffusion process

as in (2.12), c ∈ C, and K is the exercise price of the option. The option is in the

money when lnK ≤ c.lnST with payoff ec.lnST − K.e0.lnST . In [10], Duffie et al.

denoted Ga,b(y) as the price of a security that pays ea.XT at time T with b.XT ≤ y.

The implementation of this notation to the model gives the following:

Ct = Gc,c(lnK)−KG0,c(lnK) (2.14)

In [10], Duffie et al. observed that Ga,b(y) can be treated as a measure since it is an

increasing function. Therefore, they can compute the Fourier Transform of Ga,b of

Ga,b defined by

Ga,b(z) =

∫ +∞

−∞
eizydGa,b(y) (2.15)

They computed the expected present value for option when it is well-defined for each

given (d,K, T ) ∈ Rn × R× R+,

C(c,K, T, ϑ) = EQ

[
exp

(
−
∫ T

0

rudu

)
max(0, eclnST −K)

]
= Gc,c(lnK; lnS0, T, ϑ)−KG0,c(lnK; lnS0, T, ϑ)

(2.16)

where for (x, T, a, b) ∈ D × [0,∞]× Rn × Rn, Ga,b(·; lnS0, T, ϑ) : R → R is given

by

Ga,b(y; lnS0, T, ϑ) = EQ

[
exp

(
−
∫ T

0

rudu

)
ealnST1b·lnST≤y

]
(2.17)

10



Now, using (2.15),when well defined, the transform is given by

Ga,b(v; lnS0, T, ϑ) =

∫
R
eivydGa,b(y; lnS0, T, ϑ)

= ψϑ(a+ ivb, lnS0, 0, T )

(2.18)

where ψϑ is the conditional characteristic function of lnST with the following form

ψϑ(c, lnSt, t, T ) = EQ

[
exp

(
−
∫ T

t

rudu

)
ec·lnST

∣∣∣∣∣Ft

]
(2.19)

We share a proposition from [10] which extends the Lévy Inversion Formula to the

transform.

Proposition 2.3.1. (Transform Inversion) Suppose, for fixed T ∈ [0,∞], a ∈ Rn and

b ∈ R, that ϑ is well-behaved at (a+ ivb, T ) for any v ∈ R, and that∫
R
|ψϑ(a+ ivb, x, 0, T )|dv <∞. (2.20)

Then Ga,b(·;x, T, ϑ) is well-defined by (2.17) and given by

Ga,b(y; lnS0, T, ϑ) =
ψϑ(a, lnS0, 0, T )

2

− 1

π

∫ ∞

0

Im[ψϑ(a+ ivb, lnS0, 0, T )e
−ivy]

v
dv

(2.21)

Proof. See, [10, Appendix A]

2.4 Characteristic Function

To facilitate call price analysis with stochastic model, one need to find the given op-

tion’s moneyness probabilities on the underlying asset. However, finding the distribu-

tion of a stochastic model directly is a challenging endeavor. Characteristic functions

gradually decrease the effort of calculating the distribution of a random variable by

both being in a simple form as ψ(u) = E[eiuXt ] and completely defining a random

variable Xt’s probability distribution. In this section, we derive a simplified version

of the characteristic function of the risk-neutral St as presented in [16] using Ito’s

Formula.
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2.4.1 Ito’s Formula with Jumps

A crucial step for solving stochastic differential equations is to use Ito’s Formula. The

model contains two stochastic differential equations with one having jumps, therefore

we need to work with generalized Ito’s formula. In this section, we share the Ito’s

Formula for jump processes, then we state generalized Ito’s Formula for two SDE’s

as described in [20, Section 11.4].

Let us start with an stochastic process Xt with the following decomposition

Xt = X0 +Rt + It + Jt (2.22)

In (2.22), X0 is a non-random initial condition. The process Rt defined as a Riemann

Integral

Rt =

∫ t

0

θsds (2.23)

for some adopted θs. The process It in (2.22)

It =

∫ t

0

ΓsdWs (2.24)

is an Ito Integral of an adapted Γs with respective to Brownian Motion. The continu-

ous part of (2.22) denoted as XC
t is

XC
t = X0 +Rt + It (2.25)

with quadratic variation

[XC
t , X

C
t ] =

∫ t

0

Γ2
sds (2.26)

The jump part Jt in (2.22) is a right-continuous adapted pure jump process. We

denote Jt− as the process just before jump occurs. Right continuity means that Jt =

lims→t Js ∀t ≥ 0. Since X0, Rt and It is continuous, the left continuous version of

Xt is as follows:

Xt− = X0 +Rt + It + Jt− (2.27)

The jump size of X at time t can be given as

∆Xt = Jt − Jt− (2.28)

Now, we can define the Ito’s Integral as follows.

12



Definition 2.4.1 (Ito Process). Let Xt be a stochastic process as given in (2.22) and

let Φt an adopted process. The stochastic integral of Φ with respect to X is given as∫ t

0

ΦsdXs =

∫ t

0

Φsθsds+

∫ t

0

ΦsΓsdWs +
∑
0<s≤t

Φs∆Js (2.29)

In differential notion

ΦtdXt = Φtθtdt+ ΦtΓtdWt + ΦtdJt (2.30)

Using Ito’s Process, we can define multidimensional Ito-Doeblin formula for jump

processes which we later use to calculate the log-stock price lnSt and characteristic

function of the model.

Theorem 2.4.1 (Multidimensional Ito-Doeblin Formula). Let X1
t and X2

t be two

jump processes defined as in (2.22) and let f(t, x1, x2) be a function whose first and

second order partial derivatives are defined and continuous. Then

f(t,X1(t), X2(t))

=f(0, X1(0), X2(0)) +

∫ t

0

ft(s,X1(s), X2(s))ds

+

∫ t

0

fx1(s,X1(s), X2(s))dX
C
1 (s) +

∫ t

0

fx2(s,X1(s), X2(s))dX
C
2 (s)

+
1

2

∫ t

0

fx1,x1(s,X1(s), X2(s))dX
C
1 (s)dX

C
1 (s)

+
1

2

∫ t

0

fx2,x2(s,X1(s), X2(s))dX
C
2 (s)dX

C
2 (s)

+

∫ t

0

fx1,x2(s,X1(s), X2(s))dX
C
1 (s)dX

C
2 (s)

+
∑
0<s≤t

[f(s,X1(s), X2(s))− f(s,X1(s−), X2(s−))]

(2.31)

Proof. See [20, Theorem 11.5.4]

2.4.2 Characteristic Function

Before working on the characteristic function, we need to find the log-normal stock

price lnSt. Let f(x) = lnx with f(x) ∈ C2 and St be the price process. Ito-Doeblin

Formula for jumps gives us the following:
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d(lnSt) =
1

St

(
[rt − qt − µ∗λVt]Stdt +

√
VtStdW̃

(1)
t

)
− 1

2S2
t

VtS
2
t dW̃

(1)
t dW̃

(1)
t + [(lnSt)− (lnSt−)]dNt

= [rt − qt −
Vt
2

− µ∗λVt]dt+
√
VtStdW̃

(1)
t + U sdNt

(2.32)

where [dW̃
(1)
t , dW̃

(1)
t ] = dt and [(lnSt)− (lnSt−)] = ln(eUs

St)− ln(St) = U s

The characteristic function ψ(c, Vt, T − t) can be found using lnSt and Vt. For the

remaining parts of this work, we will denote lnSt as Xt for ease of notation. Under

integrability conditions as in [10], let ψϑ(c, v, T − t) = exp(A(c, T − t) + B(c, T −
t)v + cXt) with boundary condition ψϑ(c, v, 0) = ecXT at t = T . Partial derivatives

for Multidimensional Ito’s Formula are as follows:
∂ψ

∂t
= (A′(c, T − t) +B′(c, T − t))ψ,

∂ψ

∂Xt

= cψ,
∂2ψ

∂X2
t

= c2ψ,

∂ψ

∂Vt
= B(c, T − t)ψ,

∂2ψ

∂V 2
t

= B(c, T − t)2ψ,
∂2ψ

∂XtVt
= cB(c, T − t)ψ,

(2.33)

with quadratic variations [dXt, dXt] = dt, [dVt, dVt] = σ2
vdt and [dXt, dVt] = σvVtρdt.

We further assume λ = λ0 +λ1Vt to keep the affinity structure. Using Theorem 2.4.1

gives,

∂ψ =(A′(c, T − t) +B′(c, T − t)Vt)ψdt

+ cψ
[
(rt − qt − (λ0 + λ1Vt)µ

∗ − 1

2
Vt)dt+

√
VtdW̃

(1)
t

]
+

1

2
c2ψVtdt

+B(c, T − t)ψ
[
(κ(v̄ − Vt) + ηvVt)dt+ σv

√
Vt(ρdW̃

(1)
t +

√
1− ρ2dW̃

(2)
t )
]

+
1

2
B2(c, T − t)ψσ2

vVtdt+ cB(c, T − t)ψσvVtρdt

+ (λ0 + λ1Vt)[ψ(c,Xt + U s, Vt, T − t)− ψ(c,Xt, Vt, T − t)]dt

(2.34)

Martingale property implies that EQ[∂ψ|Ft] = 0 a.s. Taking conditional expectation

on the both sides of (2.34) gives:

0 =(A′(c, T − t) +B′(c, T − t)Vt)ψ + cψ[rt − qt − (λ0 + λ1Vt)µ
∗ − 1

2
Vt]

+
1

2
cψV 2

t +B(c, T − t)ψ[κ(v̄ − Vt) + ηvVt] +
1

2
B2(c, T − t)ψσ2

vVt

+ cψB(c, T − t)σvVtρ+ (λ0 + λ1Vt)[EQ[ψ(c,Xt + U s, Vt, T − t)]− ψ]

(2.35)
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Using the fact that EQ[ψ(c,Xt +U s, Vt, T − t)] = ψ · exp(µsc+
1
2
σ2
j c

2) and dividing

each side to ψ gives,

0 =(A′(c, T − t) +B′(c, T − t)Vt) + c[rt − qt − (λ0 + λ1Vt)µ
∗ − 1

2
Vt]

+
1

2
cV 2

t +B(c, T − t)[κ(v̄ − Vt) + ηvVt] +
1

2
B2(c, T − t)σ2

vVt

+ cB(c, T − t)σvVtρ+ (λ0 + λ1Vt)[exp(µ∗
jc+

1

2
σ2
j c

2)− 1]

(2.36)

We can divide (2.36) into 2 separate ODE’s as follows:

0 = B′(c, T − t) +
1

2
σ2
vB

2(c, T − t) +B(c, T − t)(cσvρ− κ+ ηv)

+

(
c(c− 1)

2
+ λ1

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

))
(2.37)

0 = A′(c, T − t) + c(rt − qt) +B(c, T − t)κv̄

+ λ0

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

)
(2.38)

Notice that (2.38) contains B(c, T − t), therefore, once needs to solve (2.37) first. To

simplicity, let a = c(1−c)−2λ1(exp(cµ∗
j+

1
2
c2σ2

j )−1−cµ∗), and b = cσvρ−κ+ηv.

Rearranging the equation gives,

dB(c, T − t)

dt
= −1

2
σ2
v

(
B2(c, T − t) +

2b

σ2
v

B(c, T − t)− a

σ2
v

)
(2.39)

dB(c, T − t)

B2(c, T − t) + 2b
σ2
v
B(c, T − t)− a

σ2
v

= −1

2
σ2
vdt (2.40)

Integrate both sides,∫ T

t

1

B2(c, T − u) + 2b
σ2
v
B(c, T − u)− a

σ2
v

dB(c, T − u) =

∫ T

t

−1

2
σ2
vdu (2.41)

The denominator in left side of (2.41) is quadratic, we can find the roots using

quadratic formula,∫ T

t

1(
B(c, T − u) + b+γ

σ2
v

)(
B(c, T − u)− γ−b

σ2
v

)dB(c, T − u) =

∫ T

t

−1

2
σ2
vdu

(2.42)
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with γ2 = b2 + aσ2
v . The integral in the left hand side of (2.42) can be separated into

two parts using method of partial fractions.

1(
B(c, T − u) + b+γ

σ2
v

)(
B(c, T − u)− γ−b

σ2
v

) =

σ2
v

2γ

 −1(
B(c, T − u) + b+γ

σ2
v

) +
1(

B(c, T − u)− γ−b
σ2
v

)
 (2.43)

Rewriting LHS of (2.42) with RHS of (2.43) gives the following:

σ2
v

2γ

∫ T

t

−dB(c, T − u)(
B(c, T − u) + b+γ

σ2
v

) +

∫ T

t

dB(c, T − u)(
B(c, T − u)− γ−b

σ2
v

)
 =

−1

2
σ2
v

∫ T

t

du

(2.44)

The integrals can be found analytically,

−1

γ

(
ln
(
B(c, 0) +

b+ γ

σ2
v

)
− ln

(
B(c, T − t) +

b+ γ

σ2
v

))

+
1

γ

(
ln
(
B(c, 0) +

γ − b

σ2
v

)
− ln

(
B(c, T − t) +

γ − b

σ2
v

))
= −(T − t) (2.45)

Rearranging (2.45) and taking the exponents of both sides gives:

B(c, T − t)bσ2
v −B(c, T − t)γσ2

v + b2 − γ2

B(c, T − t)bσ2
v +B(c, T − t)γσ2

v + b2 − γ2
= e−γ(T−t) (2.46)

Let us call τ = T − t. We can leave B(c, τ) alone to obtain the solution:

B(c, τ) =
−a(1− e−γτ )

2γ − (γ + b)(1− e−γτ )
(2.47)

Now, we can find A(c, τ) using (2.47),

− A′(c, T − t) = c(rt − qt) +B(c, T − t)κv̄

+ λ0

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

)
(2.48)

Taking the integral with respect to t on both sides,∫ T

t

−dA(c, T − u) =

∫ T

t

c(rt − qt)du+

∫ T

t

B(c, T − u)κv̄du

+

∫ T

t

λ0

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

)
du (2.49)
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The integrals can be found analytically,

A(c, T − t) = c(T − t)(rt − qt) + λ0(T − t)

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

)
− aκv̄

∫ T

t

1− e−γ(T−u)

2γ − (γ + b)(1− e−γ(T−u))
du (2.50)

The integral in (2.50) can be found using Change of Variables method. Let us call

x = e−γ(T−u)∫ T

t

1− e−γ(T−u)

2γ − (γ + b)(1− e−γ(T−u))
du =

∫
1− x

2γ − (γ + b)(1− x)
· dx
γx

(2.51)

The right hand side of (2.51) can be separated further using method of partial frac-

tions. Let us denote D = γ + b and E = 2γ,∫
1− x

2γ − (γ + b)(1− x)
· dx
γx

=

∫
dx

E −Dx(1− x)
−
∫

dx

E −D(1− x)

=
D

D − E

∫
dx

E −D(1− x)
+

1

E −D

∫
dx

x

=
2γ

(γ + b)(b− γ)

[
ln(2γ)− ln

(
2γ − (γ + b)(1− e−γ(T−t))

)]
+
γ(γ + b)(T − t)

aσ2
v

(2.52)

One thing we should also consider before obtaining the result for A(c, τ) is that the

discounting with r by the definition of Ga,b in (2.17). Since r is a constant in our

model, the integral exp
(
−
∫ T

t
rudu

)
in the (2.17) gives us exp(−rτ) as a constant.

This constant can be added in the A(c, τ) after plugging (2.52) into (2.50). This

compuation gives us the desired solution for A(c, τ);

A(c, τ) = −rτ + cτ(rt − qt) + λ0τ

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

)
− κv̄

σ2
v

[
(γ + b)τ + 2ln

(
1− γ + b

2γ
(1− e−γτ )

)]
(2.53)

Finally, we can combine the results obtained from (2.47) and (2.53) using (2.19) with

(2.16), (2.17), (2.18). Therefore, in this section we have proved the following result:
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Proposition 2.4.1. (Call Price Formula) Let Ct be the time-t price of a European

style call option with time to maturity τ , strike K and the underlying St follows the

affine stochastic jump diffusion process as in (2.2). Under risk-neutral measure Q, Ct

can be calculated with,

Ct = G1,1(−lnK)−KG0,1(−lnK) (2.54)

where,

G1,1(−lnK; v, τ, ϑ) =
ψϑ(1, v, τ)

2
− 1

π

∫ ∞

0

Im[ψϑ(1− iu, v, τ)eiulnK ]

u
du (2.55)

G0,1(−lnK; v, τ, ϑ) =
ψϑ(0, v, τ)

2
− 1

π

∫ ∞

0

Im[ψϑ(−iu, v, τ)eiulnK ]

u
du (2.56)

as in [10] with,

ψϑ(c, v, τ) = exp(A(c, τ) +B(c, τ)v + clnSt) (2.57)

B(c, τ) =
−a(1− e−γτ )

2γ − (γ + b)(1− e−γτ )
(2.58)

A(c, τ) = −rτ + cτ(rt − qt) + λ0τ

(
exp(cµ∗

j +
1

2
c2σ2

j

)
− 1− cµ∗

)
(2.59)

− κv̄

σ2
v

[
(γ + b)τ + 2ln

(
1− γ + b

2γ
(1− e−γτ )

)]
(2.60)

with a = c(1 − c) − 2λ1(exp(cµ∗
j +

1
2
c2σ2

j ) − 1 − cµ∗), b = cσvρ − κ + ηv, µ∗
j =

ln(1 + µ∗)− σ2
j/2 and γ2 = b2 + aσ2

v .

18



CHAPTER 3

ESTIMATION ALGORITHM

Just as any other mathematical model, stochastic volatility models require parameters

which need to be estimated to measure the option prices. There exists a lot of param-

eter estimation methods in the literature depending on the model specifications. Such

examples about the commonly used estimation methods can be given as Maximum

Likelihood Estimation (Friedman and Harris [12], Ait-Sahalia [1]) and Monte Carlo

(Sandmann [19], Raggi [18]). In this thesis, we will focus on the Generalized Method

of Moments to capture both stochastic volatility and jump dynamics without losing

the analytical tractability.

In this section, we discuss how to estimate our parameters for the model. First, we

give an introduction to Generalized Method of Moments, then we will introduce the

implied-state GMM and moment generating function of the model as presented in

Pan [16], and finally we will share the estimation results.

3.1 Generalized Method of Moments

Generalized Method of Moments (GMM) is a framework for deriving estimators by

using assumptions about the moments of the random variables. These assumptions

made on the sample moments provide population moment conditions. GMM calcu-

lates the sample moments by minimizing an objective function that derived from the

assumptions about the moments. In this section, we will follow the Hamilton [14]

and Alastair [13] to provide introductory material about GMM.
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Let us start with denoting wt as an (h× 1) vector of observed variables at time t, let θ

denote (a × 1) vector of unknown coefficients with true value of θ0, and let h(θ, wt)

be an (r × 1) vector-valued function with h : (Ra × Rh) → Rr. True value of the

model can be characterized as;

E[h(θ0, wt)] = 0 (3.1)

This characterization of (3.1) is also known as the orthogonality condition. If we let

yt = (w′
T , w

′
T−1, . . . , w

′
1) to be a (Th × 1) vector that contains all observations in a

sample size of T , and let g(θ; yt) be (r × 1) vector valued function g : Ra → Rr that

denotes the sample average of h(θ, wt);

g(θ; yt) =
1

T

T∑
t=1

h(θ, wt) (3.2)

Now, we can apply the main idea behind the GMM; choosing θ so that the sample

moment g(θ; yt) gets as close as possible to population moment of zero. the GMM

estimator θ̂T is the value of θ that minimizes

Q(θ, yT ) = [g(θ; yT )]
′WT [g(θ; yT )] (3.3)

where WT is a sequence of (r × r) positive definite weighting matrix.

3.2 GMM Estimators and MGF

After having a brief introduction to GMM, we can now discuss the estimation strategy

and Moment Generating Function (MGF) of the model which will help us to obtain

moments as in Pan [16]. Let us start with fixing a time interval ∆ which will be used

to sample the continous-time process {St, Vt} at discrete time {∆, 2∆, . . . , N∆}.

We will denote the discretized process as {Sn, Vn}. Time-n excess return can be

calculated with

yn = logSn − logSn−1 − r∆ (3.4)

Let us suppose that, we can observe volatility Vn just as the return yn. Since (3.4)

is depends only on {Sn, Vn}, the problem will be as the usual GMM estimation.
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Therefore, Pan [16] defines the n-th moment as in (3.1);

En−1[h(y(n,ny), V(n,nv), ϑtrue)] = 0 (3.5)

with ϑtrue being the vector of true model parameters, h : Rny × Rnv ×Θ → Rnh is a

vector valued function,

y(n,nv) = [yn, yn−1, . . . , yn−ny+1]
⊤ V(n,nv) = [Vn, Vn−1, . . . , Vn−nv+1]

⊤

are the ny-history and nv-history for some integers ny and nv respectively. Since the

volatility Vn can not be observed directly, Pan [16] suggests to use the spot price Sn

and option price Cn which can be observed in the market. The option pricing relation

can be given as follows;

Cn = Snf(Vn, ϑtrue, r, q, τ, k) (3.6)

with constant interest rate r, dividend yield q, time to maturity τ and strike to spot

ratio k = K/Sn. Pan suggests that rather than true model parameters ϑtrue, using any

other set of parameters ϑ ∈ Θ, one can still obtain unobserved volatility Vn from the

implied volatility V ϑ
n by solving

Cn = Snf(V
ϑ
n , ϑ, r, q, τ, k) (3.7)

Pan states that backing out volatility from options is not a new concept since the

famous Black-Scholes, however this specification differs from the Black-Scholes for-

mula by being the option implied volatility V ϑ
n parameter dependent. He mentions

that this parameter dependency criterion make the difference from the usual GMM

estimation and hence adding the new term Implied-State GMM. As in the GMM

specification, the Implied State GMM is also satisfies the consistency and the asymp-

totic normality properties. For a detailed proof about the IS-GMM specification, we

refer [16, Appendix C].

After obtaining option implied volatility V ϑ
n , one can now apply (3.2) to {yn, Vn} as

follows;

GN(ϑ) =
1

N

N∑
n=1

h(y(n,ny), V
ϑ
(n,nv), ϑ) (3.8)
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After finding GN(ϑ), we can define the "implied-state" GMM estimator as (3.3),

ϑ̂N = argmin
ϑ∈Θ

GN(ϑ)
⊤WGN(ϑ) (3.9)

where W is a weighting matrix with the ith component is 1/
√

var(ϵi).

We can now be able to define the moment conditions got our estimator. As Pan

suggests, one can find optimal moment conditions by using the moment generating

function of (y, V ) for any uy and uv in R as follows;

En

[
exp(uyyn+1 + uvVn+1)

]
= ϕ(uy, uv, Vn) (3.10)

In our work, we will use the moment generating function as he presented in Pan [16,

Appendix D].

Proposition 3.2.1. (Moment Generating Function) Under certain integrability condi-

tions as presented in Duffie [10], the date-n conditional moment generating function

of (yn+1, Vn+1) can be defined as,

ϕ(uy, uv, v) = exp(A(uy, uv) +B(uy, uv)v) (3.11)

with the coefficients A and B defined as,

B(uy, uv) = −a(1− exp(−γ∆))− uv[2γ − (γ − b)(1− exp(−γ∆))]

2γ − (γ + b)(1− exp(−γ∆))− uvσ2
v(1− exp(−γ∆))

(3.12)

A(uy, uv) =− κvv̄

σ2
v

(
(γ + b)δ + 2ln

[
1− γ + b+ σ2

vuv
2γ

(1− e−γ∆)
])

(3.13)

+

(
exp
(
uyµj +

u2yσ
2
j

2

)
− 1− uyµ

∗

)
λ0∆ (3.14)

with b = σvρuy−κv, a = −u2y−2uy[ηs−1/2−λ1µ∗]−2λ1(exp(uyµj+u
2
yσ

2
j/2)−1),

and γ =
√
b2 + aσ2

v

We can now find the joint conditional moments of (y, V ) by taking the derivatives of

(3.11),

En(y
i
n+1, V

j
n+1) =

∂(i+j)ϕ(uy, uv, Vn)

∂iuy∂juv

∣∣∣∣∣
uy=0,uv=0

i, j ∈ {0, 1, . . . } (3.15)
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Pan provides a scheme for calculating higher orders of i and j in his work. We refer

the reader to Pan [16, Appendix D] for the detailed version of the scheme.

Now let us define the simple moment conditions using (3.5), as in [16];

ϵy1n = yn − E[yn|Fn−1], ϵy2n = y2n − E[y2n|Fn−1]

ϵy3n = y3n − E[y3n|Fn−1], ϵy4n = y4n − E[y4n|Fn−1]

ϵv1n = Vn − E[Vn|Fn−1], ϵv2n = V 2
n − E[V 2

n |Fn−1]]

ϵyvn = ynVn − E[ynVn|Fn−1]]

with

E(ϵn) = 0, ϵn = [ϵy1n , ϵ
y2
n , ϵ

y3
n , ϵ

y4
n , ϵ

v1
n , ϵ

v2
n , ϵ

yv
n ]⊤ (3.16)

In his work, Pan mentions that the moment conditions in (3.16) provides natural and

testable results on lower degree moments; however, he also introduces a method that

allows him to compute much more efficient moment conditions. In our work, we do

not implement this additional step presented by Pan and we advice the reader to refer

[16, Section 3.2] of the related work. In the next section, we first run the estimation

algorithm using the data provided by Pan [16] to see the simplified approach’s per-

formance; later on we will attempt to apply the same scheme to our TUPRS data.
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CHAPTER 4

NUMERICAL EXAMPLES AND ESTIMATION RESULTS

In this chapter we present some numerical examples on the performance of the Gen-

eralized Method of Moments (GMM) estimation procedure outlined in the previous

chapter. Recall that this is a simplified version of the estimation procedure used in

[16], which can be summarized as follows: the process y is defined from S using:

yn = log(S∆n)− log(S∆(n−1))− r∆.

In actual data the V process is not directly observable and we have the option price

Ct as observable; to overcome this [16] defines

V ϑ
t = g(Ct, ϑ)

where g is the inverse of the option pricing function with respect to the volatility

variable (see [16, page 40]) assuming that the model parameters equal ϑ. Then GMM

is applied to the sequence (y, V ϑ) using the following seven moment conditions:

E[εi] = 0, i ∈ {1, 2, 3, 4, 5, 6, 7}, (4.1)

where

ε1 = yn − E[yn|Fn−1], ε2 = y2n − E[y2n|Fn−1],

ε3 = y3n − E[y3n|Fn−1], ε4 = y4n − E[y4n|Fn−1] = 0,

ε5 = Vn − E[Vn|Fn−1]] = 0, ε6 = V 2
n − E[V 2

n |Fn−1] = 0,

ε7 = ynVn − E[ynVn|Fn−1] = 0.

In the implementation we use the explicit formulas derived for these moments in [16,

Appendix D]. In each step of the GMM, V ϑ must be recomputed; in these computa-

tions one takes ϑ equal to the parameter estimates given by the last iteration of GMM.
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As already noted this is a simplified version of the estimation procedure used in [16];

the procedure in [16] contains an additional step in which ε are further processed to

obtain optimal moment conditions. We skip this step to simplify our first implemen-

tation of this complex estimation algorithm.

Let GN(ϑ) denote the sample analog of the moment conditions; then GMM estimates

ϑ by minimizing

E (ϑ) = GN(ϑ)
′W GN(ϑ),

where A′ denotes the transpose of A. Once again, to ease computations, we use as W

a diagonal matrix where the ith component is 1/
√

var(ϵi).

Before we apply the estimation algorithm to data we wanted to see its performance on

data obtained from simulations. In the next section we report our simulation results.

4.1 Simulation Results

To see how the GMM algorithm performs in simulations we proceeded as follows. We

fixed the parameter values to ϑ∗ and simulated (y, V ) for these parameter values; the

compute the simulated paths we discretized the continuous time dynamics using an

Euler scheme. The call price processC is then computed from (y, V ) using the option

price formula available for the model. We then reestimate ϑ∗ from the simulated data

(y, C) and compare the estimation to ϑ∗.

For ϑ∗ we use the parameter values listed in [16, Table 3, page 25]; these are the

parameter values estimated for the model in [16] when the algorithm is applied to

(y, C) arising from S&P 500 observed from January 1989 to December 1996.

To run the GMM algorithm an initial guess ϑ0 must be provided; for this initial guess

we take a random perturbation of ϑ∗ (each component of ϑ∗ is scaled by a random

number between 0 and 1). The ϑ∗ and ϑ0 used in our simulations are listed in Table

4.1.

In addition to these parameters we take ∆ = 1./50, the maturity of the option to be

T = 1.2 and r = 0.1; the simulation is run for N = 50 steps. The sample paths of y,

V and C are shown in Figures 4.1 and 4.2.
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Table 4.1: ϑ∗ and ϑ0 used in the simulations.

ν̄ σv κv ηv ρ λ ηs µ µ∗ σJ

ϑ∗ 0.153 0.3 0.3 3.6 -0.53 12.3 3.6 -0.8/100 -19.2/100 3.87/100
ϑ0 0.02 0.191 0.236 2.29 -0.463 4.26 0.179 -0.33/100 -14.57/100 3.34/100.

Figure 4.1: Simulated paths of y and V

Figure 4.2: Simulated path of the call price
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In our runs of the GMM algorithm we observed that it typically converges after 3

iterations. The GMM estimate ϑ4 of ϑ∗ with initial guess ϑ0 after 4 iterations is listed

in Table 4.2; for ease of reference ϑ∗ and ϑ0 are also relisted in the same table.

Table 4.2: GMM estimates for the simulated paths

ν̄ σv κv ηv ρ λ ηs µ µ∗ σJ

ϑ∗ 0.153 0.3 0.3 3.6 -0.53 12.3 3.6 -0.8/100 -19.2/100 3.87/100
ϑ0 0.02 0.191 0.236 2.29 -0.463 4.26 0.179 -0.33/100 -14.57/100 3.34/100
ϑ4 0.0085 0.168 0.251 2.29 -0.463 4.26 0.199 -0.31/100 -22.9/100 0.1/100

The GMM error for ϑ∗, ϑ0 and ϑ4 are E (ϑ∗) = 1.87 × 10−3, E (ϑ0) = 3.88 × 10−3

and E (ϑ4) = 3.4× 10−3.

The work [16, page 15] makes the following comments on the moment conditions

(4.1):

This choice of moment conditions is intuitive and provides some natural
and testable conditions on lower moments and cross moments of y and
V . But these are not the most efficient moment conditions.

We think that the above results further support this claim. In particular, the above

simulation results suggest the following: the GMM algorithm based on the moment

conditions (4.1) is not very sensitive to the actual model parameters. The algorithm

seems to converge quickly to a point around the initial guess ϑ0. When we repeat the

above simulation study for different parameter values we get similar results. Based on

these observations and our implementation, we find that the GMM algorithm based

on the standard moment conditions (4.1) is not very useful in identifying the actual

model parameters.

4.2 Application to Data

Given the poor simulation performance presented in the previous section of GMM

based on the moment conditions (4.1) we don’t think that it can give reliable results

when applied to real data. Nonetheless, we did apply it to see how it runs on real data

and whether it behaves in a way similar to the way it did in simulations.
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For the data we use the stock price of Turkiye Petrol Rafinerileri AS (TUPRS) and

a call option written on this asset. The time interval is the trading days between

February 1 and March 15 of 2024; we use daily price data. The Feb 1 price of the

stock is S0 = 154.7; in the given time interval the stock traded between 154.3 and

173. For the call option we use the one with strike K = 170 and maturity equal to

April 30, 2024. We take the interest rate in this time interval to be r = 0.45, which

is the policy rate of the Turkish Central Bank in this time interval. TUPRS paid no

dividends in this time interval, so we take q = 0. Finally we take ∆ = 1/260. The

graphs of y and C for the data are shown in Figure 4.3.

Figure 4.3: Paths of y and C for the data

The results of the GMM estimation using the moment conditions (4.1) for this data

are given in Table 4.3. As in the simulations, GMM converges after 3 or 4 iterations.

For the initial parameter values ϑ0 supplied to the GMM algorithm we use one that

was used in the simulations above.

Table 4.3: GMM estimates for the data

ν̄ σv κv ηv ρ λ ηs µ µ∗ σJ

ϑ0 0.02 0.191 0.236 2.29 -0.46341 4.2638 0.179 -0.33/100 -14.57/100 3.34/100
ϑ4 0.03 0.203 0.229 2.29 -0.46373 4.2642 0.1824 0.71/100 -15.85/100 0.1/100.

Qualitatively we observe a behavior similar to the one we observed in the simulation

results. Namely, the GMM algorithm based on (4.1) converges in several steps to

a point near the initial parameter estimate ϑ0. We repeated the estimation procedure

with a number of different initial guesses ϑ0 and observed similar results.
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CHAPTER 5

CONCLUSION

In this thesis, we studied the seminal work of Pan [16] on the estimation of the jump

risk premia in a stochastic volatility models with jumps. We gave a detailed derivation

of the characteristic functions used in this work. We then simulated the model and

applied the IS-GMM algorithm of [16] to the simulated data using ordinary moment

conditions. As discussed in the previous section the use of ordinary moment con-

ditions seem to lead to poor estimation results. We observed a similar performance

when we applied the algorithm to actual price data. A natural next step is to repeat

this study with the optimized moment conditions used in [16]. Another possible fu-

ture work is to allow jumps in the volatility process as is done in [9].
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