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ABSTRACT

ESTIMATION OF A STOCHASTIC VOLATILITY AND JUMPS MODEL USING
GENERALIZED METHOD OF MOMENTS WITH ORDINARY MOMENT
CONDITIONS

Yakut, Seref Kutay
M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Ali Devin Sezer

April 2024, 34| pages

One of the first works estimating jump risk premium in financial markets is the semi-
nal work of Jun Pan published in 2002. In this work Pan uses the generalized method
of moments (GMM) to estimate the parameters of a stochastic volatility price model
with jumps from index and option price data. In the implementation of GMM, Pan
uses a set of optimal moment conditions. In this thesis, we simulate the stochastic
model used in Pan’s work and apply the GMM estimation algorithm using ordinary
moment conditions on simulated data. The estimation results suggest that the ordi-
nary moment conditions are not very sensitive to model parameters and as a result
the estimation algorithm quickly converges to a point around the initial parameter es-
timate. We applied the same algorithm to a stock price and a call option quoted on
Borsa Istanbul and observed a similar performance.

Keywords: Jump-risk premium, option prices, stochastic differential equations, Borsa
Istanbul

vii



viii



0z

SICRAMALI VE STOKASTIK VOLATILITELI BIR MODELIN SADE
MOMENT KOSULLU GENELLESTIRILMIS MOMENTLER YONTEMI iLE
TAHMINI

Yakut, Seref Kutay
Yiiksek Lisans, Finansal Matematik Boliimii

Tez Yoneticisi : Prof. Dr. Ali Devin Sezer

Nisan 2024, [34] sayfa

Finansal marketlerde sigrama riski priminin hesaplanmasiyla ilgili ilk ¢alismalardan
biri Jun Pan’in 2002 yilinda yayinladig1 yazisidir. Pan bu calismasinda sicramaya
izin veren bir stokastik volatilite modelindeki stokastik diferansiyel denklemin para-
metrelerini genellestirilmis momentler yontemiyle (generalized method of moments,
GMM) endeks ve opsiyon fiyat verisi kullanarak tahmin etmistir. GMM uygulama-
sinda Pan optimize edilmis moment kosullar1 kullanmistir. Bu ¢alismamizin amaci,
Pan’in makalesinde kullandig1 modeli simiile etmek ve simiile edilen veri iizerinde
tahmin ¢alismasini sade moment kosullar1 kullanarak uygulamaktir. Tahmin algo-
ritmasi simiile edilmis verilere uygulandiginda, sade moment kosullarinin modelin
parametrelerine ¢ok duyarli olmadigi ve bu sebeple algoritmanin sonucunun énemli
Olciide algoritmaya verilen baslangic parametreleri tarafindan belirlendigi gozlem-
lenmistir. Aym algoritma Borsa Istanbul’da islem géren bir hisse senedine ve bu hisse
senedi iizerine yazili bir alim opsiyonuna da uygulanmistir ve benzer sonuglar elde
edilmistir.

Anahtar Kelimeler: Sicrama Riski Primi,Opsiyon Fiyatlandrmasi, Stokastik Diferan-
siyel Denklemler, Borsa Istanbul
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CHAPTER 1

INTRODUCTION

Stochastic differential equations (SDE) are generalizations of ordinary differential
equations (ODE) where the right side of the equation is allowed to have stochastic
integral terms driven by stochastic processes such as the Brownian motion or more
generally Levy processes. Starting with the seminal work [6] of Black and Scholes
(BS) the SDE based models gained a central role in option pricing. The initial BS
model assumes that stock prices are driven by a standard Brownian motion with con-

stant volatility, i.e., the asset price is assumed to satisfy an SDE of the form

dSt = uStdt + O'Stth

where o > 0 is a constant and W is a standard Brownian motion. A variety of works
presented to develop the Black Scholes [6] formula with implementing jump and
volatility processes such as Bakshi [3]] and Chernov [8]. An important work concern-
ing jump processes is [S] by Bates. He presented evidence that the distribution of S&P
500’s option prices can be modeled accurately using stochastic volatility process with
jumps for small volatility shocks. Various treatments applied to Bates model such as a
fast numerical solution using a Bermudian approximation by Ballestra [4] and a linear
complementarity problem formulation by Toivanen [21]. Duffie, Pan and Singleton
[10] presented an analytical framework for option pricing for generalized affine jump
diffusions using characteristic functions and Fourier transforms. A similar character-
istic function treatment done by Deng [9] for a two-factor stochastic volatility model.
In addition to being the main tools in option pricing, these models can be used to
understand the structure of financial markets. A natural question in this regard is the

following: assuming that prices in a given market exhibits random jumps, how is this
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jump-risk priced in the market? To the best of our knowledge, the first work that asks
and systematically treats this question is the seminal work [16] by Jun Pan. In [[16]],
Pan fits an SDE model that allows stochastic volatility and jumps to the S&P 500 data
to compute a risk-premium for jump risk. The goal of this thesis is to simulate the
model in this paper and try to fit it to Borsa Istanbul data using a simplified version

of the estimation procedure in [16].

The specific SDE model that [[16] uses for the stock price and volatility processes is
given in Chapter[2] In this introduction we will give a summary of Pan’s [[16] approach
in estimating jump risk premium and explain the content of our thesis work. Pan’s
uses a model for (S, V) that is similar to the Bates model with denoting S as the price
process and V' as the stochastic volatility process. In addition to (S, V'), he assumes
that the dividend process ¢ and the interest rate processes 7 to be stochastic which
are to be estimated using market data. As in the classical Black Scholes model, risk
premiums, including the jump-risk premium, are encoded in the difference between
the drifts of the price process .S under the actual probability measure governing (.S, V')
and the pricing risk neutral measure. For .S, Pan [[16] uses the S&P 500 index itself;
however for stochastic volatility V', he uses the implied volatility which is obtained
from C, the price of a call option, since volatility itself can not directly observed in
the market. For C' Pan uses a call option on S with strike K that is closest to S and
a maturity that is as near as possible to today’s date in the market. Note that to get V'
from C' one needs the model parameters, which are unknown. So in each iteration of
the estimation process [[16] uses the parameter values in the current estimation step;

we comment on this further below.

As in the Bates model in [5], the model assumptions allow a direct calculation of
the characteristic function of (.S, V). This is the main computational tool both in the
computation of option prices and model estimation. The characterstic functions used
in [16] are derived in [10]. In Section [2.4] we rederive the characteristic function of

(S, V') assuming ¢ and r to be constant.

For estimating the parameters of the stochastic volatility model, there can be found a
variety of different methods in the literature. Friedman and Harris [[12] presented a

likely-hood estimation approach using recursive numerical integration and Sandmann



[19]] showed Monte Carlo likely-hood method of estimating models with comparing
Monte Carlo Markov Chain approach. Multiple adaptations for method of moments
method is also presented, such as Duffie [11] and Bolko [7]. Andersen and Sorensen
[2] introduced generalized method of moments to stochastic models by further of-
fering how to select moments and the weighting matrix to get desirable results in
small samples. As the estimation procedure Pan uses GMM. The GMM is applicable
because the availability of the characteristic function of (S, V') enables an explicit
calculation of the joint moments. However, there is an issue that needs to be handled
before GMM estimation: V itself is not directly observable. To overcome this prob-
lem, Pan uses the following approach: let 1J,, be the sequence of parameter estimates
generated by the estimation process, let V,"" be the volatility implied by (Si, Vi) as-
suming that the actual model parameters equal ¥,,; then in the (n + 1) iteration of
GMM (S, V) is used as the underlying data; Pan calls this procedure Implied State
GMM (IS-GMM) in [16]. We will give further comment about IS-GMM in Chapter
Bl

Our thesis work consists of the following: in Section[2.4| we give a detailed derivation
of the characteristic function of (S, V') assuming  and ¢ to be constant. In Chapter
E| we simulate (S, V') and the compute C for the simulated data. We then apply the
IS-GMM algorithm of Pan to the simulated data. In our implementation of the GMM
we directly use the ordinary moment conditions rather than the optimal moment con-
ditions used in [16]. We then present a first attempt at applying this approach to
computing jump risk premium to Borsa Istanbul data. BIST30 Index consists of 30
of the major stocks traded on Borsa Istanbul. We use as S one of the components
of the BIST30 index: TUPRS, Turkiye Petrol Rafinerileri AS. As of January 2024,
TUPRS constitutes around 7% of the market capitalization of BIST30. In order to
ease our calculations, we also assumed that the interest rate r to be the Central Bank
of Turkey’s one-week repo auction rate (r = 0.45) as in February 2024. For our anal-
ysis, we chose a call option with the underlying TUPRS between dates of February
1 and March 15 of 2024. We comment on the results of the application of IS-GMM
to simulated data and to TUPRS in Chapter 4 Conclusion (Chapter [5) comments on

possible future work.






CHAPTER 2

MODEL

2.1 Data Generating Process

Throughout this work, the random variables are defined on the probability space
(Q,.#,P) with the filtration {.%;}, which satisfies the usual conditions (see, [17,
Chapter 1]). In this section, we follow the adaptation of the Bates [5] model, made
by Pan [16]. Heston’s model contains three elements of uncertainty to the underlying
price dynamic: a diffusive return shock, volatility shock and jump risk. Before stating

the data generating process, we introduce the jump dynamics in the model.

2.1.1 Jump Dynamics

In the model, the price process follows a pure jump process. A pure jump process
is a purely discontinuous stochastic process such as a Poisson Process. Jumps occur
with a Poisson Counter N; with a state-dependent stochastic intensity process { AV} :
t > 0} with A > 0. If a jump occurs at time ¢ = 7, the stock price jumps with from
S(1_) to S(7_)exp(U?) where U; is normally distributed with U ~ N(u;, 0;). This
specification creates a jump size of (exp(U?) — 1). Pan defines the jump dynamics
as a Compound Poisson process with the help of a definition in [20, Section 11.3] as

follows:

Nt
Z, =Y exp(Uf) -1 2.1)
=1
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where NV, is independent of (exp(U;7) — 1) with p = E[exp(U®) — 1] = exp(y; +
0?- /2)—1 as mean relative jump size. Using y, one can define compensated compound

process as follows:

Theorem 2.1.1. Let Z; be a compound Poisson process defined as in (2.1). Then the

compensated Poisson process

is a martingale.

Proof. See [20, Theorem 11.3.1]. O]

2.1.2 Data Generation

The data generating process introduced by Pan [16]] is as follows:

dS, = [r — qu + 1'Vi + AVi(p — pO)|Sedt + /ViS,d W + dZ, — pSiAVidt
AV = kv — Vi]dt + UU\/Vt (det(l) + 41— deWt(2)>

(2.2)

where W = [W® W®|T is a standard Brownian motion, Z; is a compound Poisson
process, independent of 1V, as described in Section [2.1.1] with both being adopted to
the filtration {.%, }.

Focusing on the equity risk premia (or drift) of the price process, stock pays out
dividend yield ¢;, appreciates 7, as constant interest rate and two risk-premium com-
ponents; 7°V; and A\V;(u — p*). Risk-premium for Brownian return risks are treated
similarly to the risk-return trade-off of the Capital Asset Pricing Model (CAPM). It
is parameterized by 1°V; where 7)° is a constant. Risk-premium for volatility risks are
not as clear as return risks, since volatility itself is not an asset to be traded. However,
Pan parameterized it with parameter 1"V, by mentioning volatility of volatility may

reflect an additional premium in options. This additional parameter will be introduced

to model in (2.6).

Jump risks are priced on the market by allowing p*, the risk-neutral jump size, to

be different from the data-generating counterpart p. The jump-timing risk can be
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measured similarly by allowing risk-neutral jump time parameter \* to be different
from the data-generating counterpart A. In his work, Pan focuses on the jump size
risk premium implicit in options; therefore we will ignore jump timing risk premium
by assuming \* = A\. While calculating risk-neutral measure, this specification con-

tributes to the pure-jump process Z; to be a martingale under risk-neutral measure

Q.

The volatility process defined as an one-factor square root process, where x,, is mean
reversion rate, v is constant long-run mean and o, is the volatility coefficient of

volatility. Volatility and price processes are correlated by p as introduced in [[15]].

2.2 Risk-Neutral Measure

In contrast of Black Scholes setting, the model contains additional parameters of
uncertainty such as jump-risks which makes the market incomplete. In order to
eliminate arbitrage opportunities, we follow a change of measure technique given

by Shreve as in [20, Section 11.6.3].

Proposition 2.2.1. Let us define a Brownian motion Wy and compound Poisson pro-
cess Zy as in Section[2.1.1|with density f(y) on a filtered probability space (Q0, F, P).
Let \* be a positive number, let f (y) be another density function with property f (y) =
0 whenever f(y) = 0 and (; be an adapted process. Define m; as follows:

t t
7rt1 = exp <—/ CudW,, — %/ Cﬁdu) (2.3)
0 0

N(Et) \, 7
Y X f(Y;)
2 _ (A=)t v 24
e H M (Y) 24
= 2.5)
The process m, is a martingale.
Proof. See [20, Lemma 11.6.8]. O



The model contains two independent Brownian Motions. To price the additional risk
factors, we need to specify the adopted (; for each Brownian Motion. In [16, Ap-

pendix A], Pan defines (; as follows:

1 v
¢ =0V ¢ = VY (0778 + 77_) VVi (2.6)

where (t(l) and Ct( are adopted processes for W and W , respectively. If we plug
(2.6) into (2.3)), we will obtain the following expressions:

t t
7rtl(1) = exp (—/0 ns\/VudW;U — %/0 (775)2Vudu) Q2.7

(2 —exp< /\/1_7(,077+ )\/_dW

1 t 1 v\ 2
-3 > (pn8+”—) Vudu> (2.8)
g

2 )0 1—=p v

where 7} (1) and 7! (2) are for W, and W), respectively.

Pan assumes the following approach for jump process: First, he assumes \* = ) to
keep jump-time intensity same as data generating process. Next, he assumes jump-
sizes are distributed log-normally with Q-mean 1} and Q-variance crj2-. Deploying our

setting in (2.4) gives us the following:

11 /0%
9 i
T =
t =1 f(Y;)
N(t) 1 exp < (lnyi_#]) )
Yio i\ 2m 202
= J (2.9)

exp ((uj 1) (2Iny; — u}f))

2
20j

Under risk neutral measure Q, the jump size risk premium in (2.2) creates a compen-

sating effect for the compound Poisson process.

Now, define 7; = [m;(1), m:(2)] " where (i) = 7} (i) * 72 with i = 1,2 as in 2.7)

and (2.8), respectively. To find a equivalent martingale measure Q, fix a maturity date
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T and define Q = f A m,dP for all A € F. Now, we give a theorem which connects

data-generating measure P to risk-neutral measure Q.

Theorem 2.2.1. Under probability measure Q, the process
t
Wt = Wt +/ CSdS (210)
0

is Brownian Motion, Z, is compound Poisson process with jump time intensity \* and
independent, identically jump distributed jump sizes having density f (Y;), and the

processes WG and Z; are independent.
Proof. See, [20, Theorem 11.6.9]. O

Using Theorem , one can find the Brownian Motion ﬁv/t under (Q measure as
follows:

AW = awV + P/ Vidt
(2.11)

VVidt

dw ) = aw? —

1 n’

- S4
= (1)
The risk-neutral price and volatility processes can be found by plugging (2.1T)) into

22).
dS; = [ri — ¢:|Sedt + /ViS,dW + dZ, — pi* S\ Vit

— _ (2.12)
AVi = k(0 = Vi) + 0" Vildt + 0,3/ Vi (pdWD 4+ /T= p2aiV,?)

where Wt = [Wt(l) , Wt@)]T is standard Brownian Motion, Z is a pure jump process
with jump arrival intensity {\V; : ¢ > 0}. The jump-amplitudes U; are normally
distributed with mean p; and variance aj?. The mean relative jump size is p* =
E%lexp(U®) — 1] = exp(p; + 07) — 1. As in the data generating measure, the last
term p*SiAV,dt is a compensator for jump process Z;. The volatility process under
Q follows the same specification as in (2.2)) except that the parameter "V, which

captures volatility risk premium.

2.3 Option Pricing

The most influential work on option pricing done by Heston in [15]. In his work, he

showed that risk-neutral probabilities in the option pricing formulas can be calculated

9



by using Fourier inversion of a explicitly known conditional characteristic function
of a stochastic volatility model. In this section, we will share an analytically tractable
method for valuing a plain vanilla call option under S; as in [10]. We denote the

model parameters in (2.12) as:

U = (Ky, U, 00, p, A, i1, 05,m°, 1", 1) (2.13)

2.3.1 Linking Characteristic Function to Option Prices

The price of a call option at time-t can be denoted as C';. Let us consider a future time
T where Cr has a payoff max (0, e¢"T — K') where Sy is a jump-diffusion process
as in (2.12), ¢ € C, and K is the exercise price of the option. The option is in the
money when InK < c.InSy with payoff e“"97 — K e0n57 - In [10], Duffie et al.
denoted G, (y) as the price of a security that pays e®*7 at time 7" with b. X7 < y.

The implementation of this notation to the model gives the following:

Cy = G.(InK) — KGo(InK) (2.14)

In [10], Duffie et al. observed that G, ;(y) can be treated as a measure since it is an
increasing function. Therefore, they can compute the Fourier Transform of ¢, of

G, defined by
+o0
Gup(2) = / e"dGap(y) (2.15)

[e.o]

They computed the expected present value for option when it is well-defined for each

given (d, K,T) e R* x R x R,

T
exp (—/ rudu> max (0, e™7 — K)
0

= G..(InK;InSy, T, 9) — KGy (InK;1nSy, T, 9)

C(c, K,T,9) =E©

(2.16)

where for (z,7,a,b) € D x [0,00] x R" X R", Go3(-;InSp, T, 9) : R — R is given

by
T
exp (—/ rudu) e“]“ST]lb.mngy
0

10

Gab(y;InSy, T,9) = E? (2.17)




Now, using (2.15),when well defined, the transform is given by

G, (v 1S, T, 9) — / 4G (y: 1nSo, T, V)
R (2.18)

= ¢’ (a + ivb, InSy,0,T)

where v? is the conditional characteristic function of InSy with the following form

T
exp (—/ rudu> < nsT
t

We share a proposition from [10] which extends the Lévy Inversion Formula to the

V'’ (c,InS;,t, T) = B

ﬁ}] (2.19)

transform.

Proposition 2.3.1. (Transform Inversion) Suppose, for fixed T € [0, 00|, a € R"™ and
b € R, that ¥ is well-behaved at (a + ivb, T') for any v € R, and that

/ 10 (a + ivb, z,0,T)|dv < oco. (2.20)
R

Then Gop(-;x,T,0) is well-defined by (2.17) and given by

9
T
Gap(y; InSo, T, V) :@D <a»ln250,0, )

1 /°° Im[)% (a + ivb, InSy, 0, T')e Y]
0

(2.21)
dv

™ v

Proof. See, [10, Appendix A] [

2.4 Characteristic Function

To facilitate call price analysis with stochastic model, one need to find the given op-
tion’s moneyness probabilities on the underlying asset. However, finding the distribu-
tion of a stochastic model directly is a challenging endeavor. Characteristic functions
gradually decrease the effort of calculating the distribution of a random variable by
both being in a simple form as 1) (u) = E[e?™*!] and completely defining a random
variable X,’s probability distribution. In this section, we derive a simplified version
of the characteristic function of the risk-neutral S; as presented in [16] using Ito’s

Formula.

11



2.4.1 Ito’s Formula with Jumps

A crucial step for solving stochastic differential equations is to use Ito’s Formula. The
model contains two stochastic differential equations with one having jumps, therefore
we need to work with generalized Ito’s formula. In this section, we share the Ito’s
Formula for jump processes, then we state generalized Ito’s Formula for two SDE’s

as described in [20, Section 11.4].

Let us start with an stochastic process X; with the following decomposition

Xt = XQ + Rt + It + Jt (222)

In (2.22), X, is a non-random initial condition. The process R; defined as a Riemann

Integral
t
Ry = / 0.ds (2.23)
0

for some adopted 6. The process I; in (2.22)

t
I, - / T.dW, (2.24)
0

is an Ito Integral of an adapted I'y with respective to Brownian Motion. The continu-

ous part of (2.22)) denoted as X is
X =Xo+ R +1, (2.25)

with quadratic variation

t
(X¢ XE) = / Ids (2.26)
0

The jump part J; in is a right-continuous adapted pure jump process. We
denote J;_ as the process just before jump occurs. Right continuity means that .J; =
lim,_,; J, Vt > 0. Since X, R; and I; is continuous, the left continuous version of
X, 1s as follows:

th == XO + Rt + [t + Jt, (227)

The jump size of X at time ¢ can be given as

AXt — Jt - th (228)

Now, we can define the Ito’s Integral as follows.

12



Definition 2.4.1 (Ito Process). Let X, be a stochastic process as given in (2.22)) and

let ®; an adopted process. The stochastic integral of © with respect to X is given as

/cde /@9ds+/<I>FdW+Z<DAJ (2.29)

0 0 0<s<t

In differential notion

O, d X, = O.0,dt + O, dW, + Oyd J, (2.30)

Using Ito’s Process, we can define multidimensional Ito-Doeblin formula for jump
processes which we later use to calculate the log-stock price InS; and characteristic

function of the model.

Theorem 2.4.1 (Multidimensional Ito-Doeblin Formula). Let X} and X? be two
Jump processes defined as in (2.22)) and let f(t,x1,z2) be a function whose first and

second order partial derivatives are defined and continuous. Then

f<t7 Xl(t)v XQ(t))
— (0, X4(0), X(0)) + / fu(s, X1 (5), Xa(s))ds

/ For (5, X1 (5), Xa(5))dXC (5) / Fon(5, X1 (), Xol())AXE (s)
- / For (5, X1 (5), Xa(5))dXC ()dXE (s) (2.31)
+3 / Fra.aa(5 X (s), Xa(5))dXS (5)d X5 (s)
n / Fon (5, X1 (5), Xa(5))dXC ()4 XS (5)
+ Y [f(s, Xa(s), Xa(s)) — f(s, X1 (s—), Xa(s—))]

0<s<t

Proof. See [20, Theorem 11.5.4] O

2.4.2 Characteristic Function

Before working on the characteristic function, we need to find the log-normal stock
price InS;. Let f(z) = Inz with f(z) € C* and S, be the price process. Ito-Doeblin

Formula for jumps gives us the following:

13



d(in,) = o ([rt g — WAV Sds + \/Vtstd’vﬁm)

352 VtSQth dWM + [(InS,) — (InS,_)]dN, (2.32)

V, N
=[ri —q: — 5'5 — WAVt + VS dW Y + UsdN,
where [th(l), th(l)] = dt and [(InS;) — (InS;_)] = In(eV"S;) — In(S;) = U*

The characteristic function (¢, V;, T — t) can be found using InS; and V;. For the
remaining parts of this work, we will denote InS; as X, for ease of notation. Under
integrability conditions as in [10], let ¥%(c, v, T — t) = exp(A(c, T —t) + B(e, T —
t)v + ¢X;) with boundary condition /¥ (c,v,0) = e“*T at t = T'. Partial derivatives

for Multidimensional Ito’s Formula are as follows:

2
W T4 BeT-w = Ty
i X, OX:
o 20 - (2.33)
2 — —
a‘/; B( T t)w7 an B( - t) w? 8Xt‘/t' CB(C7 T t)w7

with quadratic variations [dX;, dX;] = dt, [dV;, dV;] = o2dt and [d Xy, dV;] = o, Vipdt.
We further assume A = Ay + A, V; to keep the affinity structure. Using Theorem[2.4.1]

gives,
oy =(A'(e, T —t)+ B'(¢, T — t)Vy)apdt
Fev[(r—a — (o + MVt — %Vt)dt + VW] + %c%vtdt
+ B(e, T — D [(5(0 — Vi) + 0 Vi)dt + 0/ Vi(pdW) + /1 = p2dW )]
+ %BQ(C, T — t)Wo2Vidt + cB(e, T — t)o,Vipdt
+ (Mo + MV)[Y(e, Xy + U, Vi, T —t) — (e, Xy, Vi, T — t)]dt
(2.34)
Martingale property implies that E¢[0¢|.%;] = 0 a.s. Taking conditional expectation
on the both sides of (2.34) gives:
0=(A(c,T—t)+B'(c,T = t)Vi)p + cplry — o — (Ao + M Vi)™ — %Vt]
SOV + Ble,T — 1){s(® — Vi) + Vi) + 3 B(e.T — oV,
+eB(e, T =)o, Vip + (Mo + MV)E[W(c, X; + U, Vi, T = 1)] — )]
(2.35)

14



Using the fact that E®[¢(c, X; + U*,V;, T — t)] = 1 - exp(psc + 307¢?) and dividing

each side to 1) gives,
1
0 :(A’(c, T — t) + B’(c, T — t)vt) + C[?”t —q — (>\0 + )\lvt),u* . §Vt]
1 1
+ 5V 4+ B(e. T = t)[s(0 = V) + Vi + 5 BX e, T — t)orV; (2.36)

+cB(c, T —t)o,Vip + (Ao + M Vi) [exp(p

* 1 2.2
jc+§ajc)—1]

We can divide (2.36)) into 2 separate ODE’s as follows:

1
0=DB'(c,T—t)+ 50332(0, T —1t)+ B(c, T —t)(coyp — K+ 1)

clc—1 1
+ <% + A\ (exp(cuj + §c2012-) —1- c,u*)) (2.37)

0=A(c, T —t)+c(ry —q) + B(e, T — t)kv

1
+ Xo (exp(c,u; + 5020?) —1- cu*) (2.38)

Notice that (2.38) contains B(c, T' — t), therefore, once needs to solve (2.37) first. To
simplicity, let a = ¢(1—c¢) — 2\ (exp(cp +5¢%07) —1—cp), and b = co,p— K +1".

Rearranging the equation gives,

dB(c,T—t) 1 ,( 2b a
WBlel =0 _ 1 (B (€T =)+ SBeT-0-5 (2.39)
B(c, T — 1
dB(e, T — 1) — o2t (2.40)
B*(c,T —t)+ %B(c,T —t) — % 2

v

Integrate both sides,

/T L dB(c, T — u) /T L 2du  (2.41)
—u)= —=0 .
' B2(c,T—u)+§—ZB(c,T—u)—% ’ ;2"

The denominator in left side of (2.41I) is quadratic, we can find the roots using

quadratic formula,

r 1 1,
dB(c, T —u) = ——o.du
t (B(C,T —u) + b;?) (B(C,T —u) — 70_31’> p 2
(2.42)
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with v2 = b? + ac?. The integral in the left hand side of (2:42) can be separated into

two parts using method of partial fractions.

1
(B(C,T —u) + b;?) (B(C,T —u) — L—Qb)
2 -1 1
Ty + (2.43)
2y (B(c,T—u)—{—?—J) <B(C,T—u) - 7;;’)
Rewriting LHS of (2.42)) with RHS of (2.43) gives the following:
2 T - - T . o T
o, / dB(c, T —u) N / dB(c, T —u) _ _103/ du
2y \ J; (B(C,T_u)+bj_27) t (B(C,T—u)—tgb> 2 "
(2.44)

The integrals can be found analytically,

%(111(3((:,0) N b:g”) —1n(B(c,T—t) + b:;))

+1 <ln(B(c, 0+ 127 <in(BleT -1+ 12 b)) —(T-t) @43)

2
v Oy

Rearranging (2.45) and taking the exponents of both sides gives:
B(c, T —t)bo} — B(c, T —t)yo, +0* —~v* (T0)

= 2.46
B(e, T —t)bo2 + B(c, T — t)yo2 + b2 — 2 (2.46)
Let us call 7 = T — t. We can leave B(c, 7) alone to obtain the solution:
_ 1 0T
B(c,7) a(l =) @47

T2y - (yh)(I—e)
Now, we can find A(c, 7) using 2.47),

— A(e,T—t)=c(ry — q) + B(¢e, T — t)k0

* 1 *
+ o (exp(c,uj + 5c?aj?) —1—cp ) (2.48)
Taking the integral with respect to ¢ on both sides,

T T T
/ —dA(c, T —u) = / c(ry — q)du + / B(e,T — u)kvdu
t t t

T
1
+ /t Ao (exp(cu; + 50205) —1- cu*) du (2.49)

16



The integrals can be found analytically,

1
Ale, T —t) =c(T —t)(re — qr) + Mo(T — 1) (exp(cu; + 5020?) —-1- CM*)

o[ Lo et du (250
‘/ B (o eyt &0

The integral in (2.50) can be found using Change of Variables method. Let us call

r = G*V(T*U)

T 1 — —y(T—u) 1 —
/ ‘ du = / x AT s
¢ 27— (v +0)(1 —eT-w) 2y = (v+0)(1—xz)

The right hand side of (2.31)) can be separated further using method of partial frac-

tions. Let us denote D = v+ band E = 27,

/27(71+b:§(1x)d.% )
:/E—D;l—x)_/wzcl—x)

D dx n 1 /d_x
" D-EJ E-Dl—-2) E-D) =«

— Mﬁ [ln(%) - 1n(27 —(y+b)(1— e*’y(Tft))):|
n v(y + b)(T —t) 0.5

v

One thing we should also consider before obtaining the result for A(c, ) is that the
discounting with r by the definition of G, in (2.17). Since r is a constant in our
model, the integral exp( — ftT Tudu) in the gives us exp(—r7) as a constant.
This constant can be added in the A(c,7) after plugging (2.52) into (2.50). This

compuation gives us the desired solution for A(c, 7);

1
Ale,7) = —rm 4+ cr(ry — q) + AT (exp(cu; + 5020?.) —1- CM*)
KU

T 52
UU

b
{(’y +b)7 +2In(1 — %(1 — e‘”))] (2.53)
v
Finally, we can combine the results obtained from (2.47) and (2.53) using (2.19) with

2.16)), 2.17), 2.18)). Therefore, in this section we have proved the following result:

17



Proposition 2.4.1. (Call Price Formula) Let C; be the time-t price of a European
style call option with time to maturity 7, strike K and the underlying S; follows the
affine stochastic jump diffusion process as in [2.2). Under risk-neutral measure Q, C;

can be calculated with,

O, = Gro(—InK) — KGo1(—InK) (2.54)
where,
9 00 G(1 _ iuln K
Gi1(=InK;v,1,9) = M _ l/ Im[y"(1 —iu, v, 7)e ]du (2.55)
2 T Jo U
9 1 o/ g iuln K
Go1(—InK;v,1,9) = M _ _/ m[y”(—iu, v, T)e ]du (2.56)
2 ™ Jo U
as in [10] with,
VY (c,v,7) = exp(A(c, 7) + B(c, 7)v + clnS;) (2.57)
— T
B(c,7) ol —e7) (2.58)

I RICEDIOErED

1
Ale,7) = —rm +er(re — @) + AoT (exp(cuj + 5020]2) —1- C#*) (2.59)

KU

52
O-’U

{(7 +b)7 + 2in(1 — 72—?(1 — 6—77))} (2.60)

with a = ¢(1 — ¢) — 2\ (exp(cp + 5¢%02) — 1 —cp*), b = copp — K+ 1", pf =
In(1+ p*) — 02 /2 and v* = b* + ao.

18



CHAPTER 3

ESTIMATION ALGORITHM

Just as any other mathematical model, stochastic volatility models require parameters
which need to be estimated to measure the option prices. There exists a lot of param-
eter estimation methods in the literature depending on the model specifications. Such
examples about the commonly used estimation methods can be given as Maximum
Likelihood Estimation (Friedman and Harris [12]], Ait-Sahalia [[1]]) and Monte Carlo
(Sandmann [19], Raggi [18]]). In this thesis, we will focus on the Generalized Method
of Moments to capture both stochastic volatility and jump dynamics without losing

the analytical tractability.

In this section, we discuss how to estimate our parameters for the model. First, we
give an introduction to Generalized Method of Moments, then we will introduce the
implied-state GMM and moment generating function of the model as presented in

Pan [16], and finally we will share the estimation results.

3.1 Generalized Method of Moments

Generalized Method of Moments (GMM) is a framework for deriving estimators by
using assumptions about the moments of the random variables. These assumptions
made on the sample moments provide population moment conditions. GMM calcu-
lates the sample moments by minimizing an objective function that derived from the
assumptions about the moments. In this section, we will follow the Hamilton [14]

and Alastair [13] to provide introductory material about GMM.
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Let us start with denoting w; as an (h x 1) vector of observed variables at time ¢, let 0
denote (a x 1) vector of unknown coefficients with true value of 6y, and let h(6, w;)
be an (r x 1) vector-valued function with i : (R® x R") — R". True value of the

model can be characterized as;

E[h(6y, w)] =0 (3.1)

This characterization of (3.1)) is also known as the orthogonality condition. If we let
yy = (Wh,wh_{,...,w}) tobe a (Th x 1) vector that contains all observations in a
sample size of T', and let g(6; y;) be (r x 1) vector valued function g : R* — R" that
denotes the sample average of h(6, w;);
L I
9(0530) = 7 > (0, w) (3.2)

t=1

Now, we can apply the main idea behind the GMM; choosing 6 so that the sample
moment g(6;y,) gets as close as possible to population moment of zero. the GMM

estimator éT is the value of # that minimizes

Q0 yr) = [9(6; yr) Wrlg(6; yr)] (3.3)

where W is a sequence of (r x r) positive definite weighting matrix.

3.2 GMM Estimators and MGF

After having a brief introduction to GMM, we can now discuss the estimation strategy
and Moment Generating Function (MGF) of the model which will help us to obtain
moments as in Pan [16]. Let us start with fixing a time interval A which will be used
to sample the continous-time process {S;, V;} at discrete time {A,2A,..., NA}.
We will denote the discretized process as {S,,,V,,}. Time-n excess return can be
calculated with

Yn = logs,, —logS, 1 —rA (3.4

Let us suppose that, we can observe volatility V,, just as the return y,,. Since (3.4)

is depends only on {S,,V,,}, the problem will be as the usual GMM estimation.
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Therefore, Pan [16] defines the n-th moment as in (3.1));

]En—l [h(y(n,ny)v ‘/(n,nv)a ﬁtrue)] =0 (35)

with ¥, being the vector of true model parameters, i : R™ x R™ x © — R is a
vector valued function,

Yn,n,) = [yna Yn—1y--- >yn—ny+1]T ‘/(n,nv) = [an Vn—lv sy Vn—nv—i-l]—r
are the n,-history and n,-history for some integers n, and n, respectively. Since the
volatility V,, can not be observed directly, Pan [16] suggests to use the spot price .5,

and option price C,, which can be observed in the market. The option pricing relation

can be given as follows;

CTL - Snf<vn7 79157“11467 rq,T, k) (36)

with constant interest rate 7, dividend yield ¢, time to maturity 7 and strike to spot
ratio k = K/S,,. Pan suggests that rather than true model parameters 9y, using any
other set of parameters ¥ € O, one can still obtain unobserved volatility V,, from the

implied volatility V/” by solving
Cn = Snf(‘/nﬁal%raq’T? k) (37)

Pan states that backing out volatility from options is not a new concept since the
famous Black-Scholes, however this specification differs from the Black-Scholes for-
mula by being the option implied volatility V,” parameter dependent. He mentions
that this parameter dependency criterion make the difference from the usual GMM
estimation and hence adding the new term Implied-State GMM. As in the GMM
specification, the Implied State GMM is also satisfies the consistency and the asymp-
totic normality properties. For a detailed proof about the IS-GMM specification, we

refer [[16, Appendix C].

After obtaining option implied volatility V,”, one can now apply (3.2) to {y,, V,,} as

follows;
N

1
GN () = 57 2 hWnn): Vi) (3.8)

n=1
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After finding G v (v), we can define the "implied-state” GMM estimator as (3.3),
Oy = arg{’pigGN () TWGN () (3.9)
S
where W is a weighting matrix with the 7" component is 1//var(e;).

We can now be able to define the moment conditions got our estimator. As Pan
suggests, one can find optimal moment conditions by using the moment generating

function of (y, V') for any u, and u, in R as follows;

E, [exp(uyynﬂ + uUVnH)} = O(Uy, Uy, V7) (3.10)

In our work, we will use the moment generating function as he presented in Pan [16),

Appendix D].

Proposition 3.2.1. (Moment Generating Function) Under certain integrability condi-
tions as presented in Duffie [10], the date-n conditional moment generating function

of (Yns1, Vas1) can be defined as,
O(Uy, Uy, v) = exp(A(uy, uy) + B(uy, uy)v) (3.11)

with the coefficients A and B defined as,

Ca(l —exp(—7A)) —w[2y — (v = b)(1 — exp(—7A))]

27 — (7 + b)(1 — exp(—yA)) — uyo2(1 — exp(—A)) (3.12)

B(u:wuv) =

o b+ o2u,

Ay, 1) = — ’22” ((’y 4 B)8 + 2In [1 . %(1 - NA)D (3.13)
22

o+ exp (g + %) — 1= u | MoA (3.14)

With b = oy puy — Ky, 6 = —ug —2uy[1s—1/2 =Xy pi*] = 20 (exp(uyp; +uio? /2) —1),

and vy = /b + ac?

We can now find the joint conditional moments of (y, V') by taking the derivatives of
@.11,

D (uy, uy, Vi)

S b i,j€{0,1,...}  (3.15
Yy v

En(y;—i—h V11j+1) =

Uy =0,u,=0
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Pan provides a scheme for calculating higher orders of ¢ and j in his work. We refer

the reader to Pan [16, Appendix D] for the detailed version of the scheme.

Now let us define the simple moment conditions using (3.5)), as in [16];

with

6%1 =Yn — E[yn|yn—1]’ 6%2 = yrQL - E[%ﬂﬁn—l]
e = ys —E[ys| Fn], €' =yp — Elyp|Fni]
Ezl = Vn - E[Vn|ﬁn—1]7 622 = an2 - ]E[Vn2|ﬁn_1“

Ezv - ynVn - E[ynvn‘tgzn—l]]

E(e,) =0, €, = [V}, €2 ¥ vt el ev? w]T (3.16)

nJ'’mi»XmnmrinIrInIrInIin

In his work, Pan mentions that the moment conditions in (3.16)) provides natural and

testable results on lower degree moments; however, he also introduces a method that

allows him to compute much more efficient moment conditions. In our work, we do

not implement this additional step presented by Pan and we advice the reader to refer

[16, Section 3.2] of the related work. In the next section, we first run the estimation

algorithm using the data provided by Pan [[16] to see the simplified approach’s per-

formance; later on we will attempt to apply the same scheme to our TUPRS data.
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CHAPTER 4

NUMERICAL EXAMPLES AND ESTIMATION RESULTS

In this chapter we present some numerical examples on the performance of the Gen-
eralized Method of Moments (GMM) estimation procedure outlined in the previous
chapter. Recall that this is a simplified version of the estimation procedure used in

[16], which can be summarized as follows: the process y is defined from S using:

Yn = 10g(San) — 10g(Sam-1)) — rA.

In actual data the V' process is not directly observable and we have the option price

C, as observable; to overcome this [[16] defines
‘/;9 =g (Ct’ 19)

where ¢ is the inverse of the option pricing function with respect to the volatility
variable (see [16, page 40]) assuming that the model parameters equal ©/. Then GMM

is applied to the sequence (y, VV”) using the following seven moment conditions:
Ele;] =0,i € {1,2,3,4,5,6,7}, 4.1
where
e1 = Yo — Elyal Fui] 22 = v — Elyn | P,
€3 = yf; - E[yilﬁn_l], €4 = yi - E[y;ﬂyn—l] =0,
s = Vo —E[V,|Fni]] = 0,66 = VnQ - E[Vﬂt%z—ﬂ =0,

er = Yn Vo — Blyn Vo | Zn1] = 0.

In the implementation we use the explicit formulas derived for these moments in [16),
Appendix D]. In each step of the GMM, V¥ must be recomputed; in these computa-

tions one takes 1) equal to the parameter estimates given by the last iteration of GMM.
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As already noted this is a simplified version of the estimation procedure used in [[16]];
the procedure in [[16] contains an additional step in which ¢ are further processed to
obtain optimal moment conditions. We skip this step to simplify our first implemen-

tation of this complex estimation algorithm.

Let G (1)) denote the sample analog of the moment conditions; then GMM estimates
) by minimizing

EW) =GN W Cn(V),
where A" denotes the transpose of A. Once again, to ease computations, we use as #

a diagonal matrix where the i component is 1/+/var(e;).

Before we apply the estimation algorithm to data we wanted to see its performance on

data obtained from simulations. In the next section we report our simulation results.

4.1 Simulation Results

To see how the GMM algorithm performs in simulations we proceeded as follows. We
fixed the parameter values to ¥* and simulated (y, V') for these parameter values; the
compute the simulated paths we discretized the continuous time dynamics using an
Euler scheme. The call price process C' is then computed from (y, V') using the option
price formula available for the model. We then reestimate ¥* from the simulated data

(y, C') and compare the estimation to 9*.

For U* we use the parameter values listed in [16, Table 3, page 25]; these are the
parameter values estimated for the model in [[16] when the algorithm is applied to

(y, C') arising from S&P 500 observed from January 1989 to December 1996.

To run the GMM algorithm an initial guess Jy must be provided; for this initial guess
we take a random perturbation of ¥* (each component of ¥ is scaled by a random

number between 0 and 1). The ¥* and ¥, used in our simulations are listed in Table

4.1l

In addition to these parameters we take A = 1./50, the maturity of the option to be
T = 1.2 and r = 0.1; the simulation is run for N = 50 steps. The sample paths of ,
V and C are shown in Figures 4.1 and 4.2]
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Table 4.1: ¥* and 9, used in the simulations.

Yn

Figure 4.1: Simulated paths of y and V'
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Figure 4.2: Simulated path of the call price
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In our runs of the GMM algorithm we observed that it typically converges after 3
iterations. The GMM estimate 1, of * with initial guess ¥, after 4 iterations is listed

in Table for ease of reference ¥* and v are also relisted in the same table.

Table 4.2: GMM estimates for the simulated paths

v oy Ko Mo p A s p B oy

9 | 0153 | 03 03 | 36 | -053 | 123 | 3.6 | -0.8/100 | -19.2/100 | 3.87/100
Yo | 0.02 | 0.191 | 0.236 | 2.29 | -0.463 | 4.26 | 0.179 | -0.33/100 | -14.57/100 | 3.34/100
Vs | 0.0085 | 0.168 | 0.251 | 2.29 | -0.463 | 4.26 | 0.199 | -0.31/100 | -22.9/100 | 0.1/100

The GMM error for 9%, ¥y and ¥4 are &(9*) = 1.87 x 1073, &(Jy) = 3.88 x 1073
and &(¥4) = 3.4 x 1073,

The work [16, page 15] makes the following comments on the moment conditions

@.1):

This choice of moment conditions is intuitive and provides some natural
and testable conditions on lower moments and cross moments of y and
V. But these are not the most efficient moment conditions.

We think that the above results further support this claim. In particular, the above
simulation results suggest the following: the GMM algorithm based on the moment
conditions (4.1) is not very sensitive to the actual model parameters. The algorithm
seems to converge quickly to a point around the initial guess 9. When we repeat the
above simulation study for different parameter values we get similar results. Based on
these observations and our implementation, we find that the GMM algorithm based
on the standard moment conditions (@.T)) is not very useful in identifying the actual

model parameters.

4.2 Application to Data

Given the poor simulation performance presented in the previous section of GMM
based on the moment conditions (#.1)) we don’t think that it can give reliable results
when applied to real data. Nonetheless, we did apply it to see how it runs on real data

and whether it behaves in a way similar to the way it did in simulations.
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For the data we use the stock price of Turkiye Petrol Rafinerileri AS (TUPRS) and
a call option written on this asset. The time interval is the trading days between
February 1 and March 15 of 2024; we use daily price data. The Feb 1 price of the
stock is Sp = 154.7; in the given time interval the stock traded between 154.3 and
173. For the call option we use the one with strike X = 170 and maturity equal to
April 30, 2024. We take the interest rate in this time interval to be » = (.45, which
is the policy rate of the Turkish Central Bank in this time interval. TUPRS paid no
dividends in this time interval, so we take ¢ = 0. Finally we take A = 1/260. The
graphs of y and C for the data are shown in Figure

0.04 - 24
22 F

0.02 PN r i
N \ o\ 20

Yn
Sy
[

-0.02

2004 L L L L L L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
n

Figure 4.3: Paths of y and C' for the data

The results of the GMM estimation using the moment conditions (@.1)) for this data
are given in Table @ As in the simulations, GMM converges after 3 or 4 iterations.

For the initial parameter values ¥ supplied to the GMM algorithm we use one that
was used in the simulations above.

Table 4.3: GMM estimates for the data

v Ov Ko Ud 14 A s M w* ag

Yo | 0.02 | 0.191 | 0.236 | 2.29 | -0.46341 | 4.2638 | 0.179 | -0.33/100 | -14.57/100 | 3.34/100
¥4 | 0.03 | 0.203 | 0.229 | 2.29 | -0.46373 | 4.2642 | 0.1824 | 0.71/100 | -15.85/100 | 0.1/100.

Qualitatively we observe a behavior similar to the one we observed in the simulation
results. Namely, the GMM algorithm based on (#.I)) converges in several steps to
a point near the initial parameter estimate 5. We repeated the estimation procedure

with a number of different initial guesses vy and observed similar results.
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CHAPTER 5

CONCLUSION

In this thesis, we studied the seminal work of Pan [16] on the estimation of the jump
risk premia in a stochastic volatility models with jumps. We gave a detailed derivation
of the characteristic functions used in this work. We then simulated the model and
applied the IS-GMM algorithm of [[16] to the simulated data using ordinary moment
conditions. As discussed in the previous section the use of ordinary moment con-
ditions seem to lead to poor estimation results. We observed a similar performance
when we applied the algorithm to actual price data. A natural next step is to repeat
this study with the optimized moment conditions used in [[16]. Another possible fu-

ture work is to allow jumps in the volatility process as is done in [9].
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